Kit for immunoglobulin Kappa light chains detection by chromogenic in situ hybridization (CISH)

DESCRIPTION:

This kit contains reagents to perform manual or automated chromogenic in situ hybridization (CISH) technique on human tissue sections fixed in buffered formalin and embedded in paraffin.

This kit contains a visualisation system based on the Ultravision Quanto polymer and is sufficient to perform 20 determinations following the recommended protocol.

Presentation: The general reference / presentation for this kit is:

MAD-001895QK - 20 tests

This reference is for presentation packaging in Low Density Polyethylene (LDPE) dropper. In case the user wants other presentations (references / different volumes) must contact the supplier.

Intended Use: Diagnostic in vitro in humans

Storage conditions: refrigerator between 2 and 8 °C.

Warranty: The container once opened the reagent can be used until the expiration date indicated on the label. If the reagent has been stored under conditions other than those indicated in this document, the user must previously check its correct functionality considering that the product's warranty is no longer valid.

Special Handling Instructions: This reagent is specially designed for handling in Lab Vision Autostainer 480 and 780.

Warnings and Precautions: 1) The product may only be operated by trained users and authorized laboratories. 2) Please note that the ultimate responsibility in the optimization and interpretation of chromogenic hybridizations technique corresponds to the attending physician and technicians who use the kit. Also, this set of reagents is only a useful tool for the interpretation of morphological findings of each case in conjunction with other relevant diagnostic tests and patient’s clinical data. 3) The reagent contains sodium azide (NaN3) as a preservative. Although this product is highly toxic and if mixed with water or acids, mainly in the presence of metals there is danger of explosion, these risks are minimized to the maximum when used at concentrations below 0.05% as in this case. However, for handling this reagent the following precautions should be taken: a) Use of gloves and protective equipment established for hybridization and immunohistochemical techniques and lab strict compliance with the general safety practices existing in it; b) Do not store reagents in metal packaging and do not use metal tools for its handling; c) Store waste for disposal in appropriate containers regulated under current regulations in each laboratory.

SPECIFICITY

The immunoglobulin molecules (Igs) are composed of two pairs of polypeptide chains, two heavy (IgH of 50-70 kD) and two light chains (IgL 23 kD), each of the light chains containing two successive domains: the first constant domain and the second a variable domain. Light chains are covalently linked to each correspondent heavy chain and are assembled through somatic rearrangement of the hypervariable region gene segment V (D) J. This process occurs during the early stages of the maturation of B lymphocytes, so that first (in the pro-B stage) the IgH chain rearrangement occurs to define the type of immunoglobulin that each cell will secrete and subsequently (in the pre-B stage) the IgL chain rearrangement occurs.
In humans there are two IgL isotypes: Kappa (κ), encoded by a gene located on second chromosome and the Lambda (λ) with the coding gene located on chromosome 22. Each of the B-lymphocytes produces heavy chain immunoglobulins (IgG, IgM, IgA, IgD or IgE) and light chain immunoglobulins κ (IgLκ) or λ (IgLλ) but never both simultaneously. Under normal conditions, 60% of B lymphocytes produce κ light chain immunoglobulins with the rest represented by the λ chain. Therefore in all reactive lymphoid proliferation a mixed population of κ and λ chains positive cells is recognized, which is granted as a polyclonal expression.

As all malignant neoplasias, B cell lymphomas are clonal tumors originating from a transformed cell; hence, they are capable of producing only one type of immunoglobulins light chains, which is known as a monoclonal expression. Therefore the determination of the relationship between the two light chains of immunoglobulins in a cell population represents an essential tool for establishing the clonality in B cell lymphomas and neoplastic or reactive plasma cell dyscrasias.

This probe is designed for the detection of mRNA of the kappa light chains (κ) through chromogenic in situ hybridization (CISH) techniques in tissues or cells fixed in 10% buffered formalin and paraffin embedded.

DIAGNOSTIC APPLICATIONS:

Determining the relative ratio of the two existing light chains of immunoglobulins by the chromogenic in situ hybridization techniques is suitable for the detection of B cell lymphoproliferative disorders clonality, providing substantial support for a lymphoma diagnosis when compared with any lymphoid hyperplasia or other reactive lymphadenitis. In the same line it has a diagnostic value in plasma cell dyscrasias and leukemia, myeloma and plasmacytoma.

PATTERN AND CONTROLS

Pattern: Nuclear

Positive Control: Tissue section from tonsil.

Negative Control: Homologous preparation to the sample to be tested incubated with a nonspecific mRNA for Kappa light chains.

LIMITATIONS OF REACTIVE

The use of frozen tissue has not been evaluated.

SAMPLE TYPES

Sections of 4 microns thick mounted on special slides for immunohistochemistry and obtained from paraffin-embedded tissues, preferably fixed in buffered formalin.

PRINCIPLE OF ANALYTICAL METHOD (in situ hybridization)

In situ hybridization (ISH) allows the detection of specific sequences of DNA or RNA in histological and cytological samples without losing morphological details. The ISH technique is based on hybridization between a DNA or RNA sequence specifically labelled (probe) and a sequence of DNA or RNA present in the sample. If there is any complementarity between the sequences the hybridization occurs, which results in a hybrid product. Hybrids can be easily viewed by a chromogenic immunohistochemical staining procedure (CISH) directed toward specific marker of the probe employed.

The ISH technique is highly sensitive, specific and easy to perform, and in addition, contains no radioactive products. The reagents supplied in this kit are perfectly matched and therefore, the kit is an easy to use tool to perform CISH.

COMPONENTS AND REAGENTS INCLUDED IN THE KIT:

- Proteinase K 20 tests
- Digoxigenin labelled Kappa light chain probe 20 tests
- Anti-Digoxigenin Antibody 20 tests
- Blocking of endogenous peroxidase solution 20 tests
- Ultravision Quanto Ultraperoxidase solution 20 tests
- Ultravision Quanto Polymer Amplifier 20 tests
- Ultravision Quanto Polymer 20 tests
- Chromogen: DAB+buffer substrate 20 tests
EQUIPMENT AND MATERIALS REQUIRED BUT NOT PROVIDED IN THE KIT

- Humid incubation chamber
- Slides treated with silane or electrically charged
- Coverslips
- Thermal plate or oven (37 °C)
- Dewaxing and hydration battery (xylene, absolute ethanol and of 80% and 70% concentrations
- TBS buffer
- Micropipettes
- Contrast hematoxylin
- Optical microscope

TECHNICAL PROTOCOL FOR CISH KAPPA LIGHT CHAIN STAINING
USING MASTER DIAGNOSTIC DETECTION KIT

This protocol is preferred for conducting CISH on tissue sections fixed in buffered formalin and embedded in paraffin.

1. Dewaxing
 a. Incubate slides with paraffin tissue sections in the oven at 60 °C overnight.
 b. Dewaxing:
 - Xylene 10 min 2x
 - Absolute ethanol 2x 5 min
 - Ethanol 80% 5 min
 - Ethanol 70% 5 min
 - Distilled water (10 min)

2. Enzymatic digestion
 a. Dilute 5 µl of concentrated Proteinase K in 2 ml of TBS buffer.
 b. Apply the resulting solution onto the tissue and incubate 8 min at room temperature (RT).
 c. Wash 3 times with TBS buffer at RT

3. Hybridization
 a. Apply 10 µl of Kappa light chain probe on the tissue.
 b. Place a coverslip on the section.
 c. Place the slide into a wet camera and incubate 1 hour at 55 °C.

4. Detection and visualisation (manual or automatic)
 a. Remove the coverslip and wash 3 times in TBS at RT
 b. Apply 200 µl of peroxidase blocking solution on the tissue and incubate 10 min at RT
 c. Wash 3 times in TBS.
 d. Apply 200 µl of Quanto Ulbrabloquing solution on the tissue and incubate 8 min at RT.
 e. Dispose without washing.
 f. Apply 200 µl of anti-digoxigenin antibody on tissue and incubate for 10 min at RT.
 g. Wash 3 times in TBS.
 h. Apply 200 µl of Polymer Amplifier on the tissue and incubate 10 min at RT.
 i. Wash 3 times in TBS.
 j. Apply 200 µl of Quanto Ultrasound Polymer on the tissue and incubate 10 min at RT.
 k. Wash 3 times in distilled water
 l. Mix a drop of DAB with 1 ml of substrate solution and applying the resulting solution onto the tissue; incubate for 5 min at RT
 m. Wash 3 times in distilled water.

5. Contrast staining and mounting
 a. Stain with contrast haematoxylin.
 b. Bluing in tap water.
 c. Dehydrate and clear with increasing concentrations of alcohols and xylene.
 d. Mount and interpret the results under a microscope.

INCIDENTS AND COMPLAINTS
It is recommended to thoroughly follow all instructions contained in these technical data sheet. In case of occurrence of atypical or unexpected results please contact the Vitro SA sales representative of the area. If not, please contact Master Diagnostica using its contact information as mentioned above.

LIMITATIONS OF THE REACTIVE

If you have met all the conditions of storage and handling in the laboratory, this reagent is guaranteed throughout its warranty life. Master Diagnostica is not responsible for damage, personal injury or economic loss that this reagent can be involved.

REFERENCES: